Fibre Channel and FCoE: Some Basics

There’s been some misconceptions and misinformation lately about FCoE. Like any technology, there are times when it makes sense and times when it doesn’t, but much of the anti-FCoE talk lately has been primarily ignorance and/or wilful misrepresentation.

In an effort to fight that ignorance, I put together a quick introduction to how FC and FCoE works. They both operate on the basic premise that you can’t drop any frames. Fibre Channel was built as a lossless protocol, and with a bit of work, Ethernet can also be lossless.

Check it out:

Learn what Russ Fellows Doesn’t Know

So how’s this for a condescending tweet?

It’s from Russ Fellows, author of the infamous FCoE “study” (which has been widely debunked for its many hilarious errors):

Interesting article (check it out). But the sad/amusing irony is that he’s wrong. How is he wrong? Here’s what Russ Fellows doesn’t know about storage:

1, 2, 4, and 8 Gbit Fibre Channel (as he points out) uses 8/10 bit encoding. That means about a 20% of the bandwidth available was lost due to encoding overhead (as Russ pointed out). That’s why 8 Gbit Fibre Channel only provides 800 MB/s of connectivity, even though 8,000 Megabits per second equates to 1,000 Megabytes per second (8000 Megabits / (8 bits per byte) = 1,000 Megabytes).

With this overhead in mind, Fibre Channel was designed to give 100 MB/s for every Gigabit of speed. It never increased the baud rate to make up for the overhead.

Ethernet, on the other hand, did increase the baud rate to make up for the overhead. Gigabit Ethernet uses the same 8/10 bit encoding, but they kicked the baud rate up to 1.25 gigabaud to make up the differences. As such, Gigabit Ethernet provides true 1 gigabit of throughput, or 125 Megabytes per second.

10 Gigabit Ethernet moved to 64/66 encoding, and kept to the approach of not letting the overhead impact throughput. 10 Gigabit Ethernet then provides 1250 Megabytes per second of throughput. The baud rate is 10.3125, giving true 10 Gigabit per second of data.

When Fibre Channel moved to the more efficient 64/66 bit encoding, rather than change the 100 MB/s per gigabit to 125 MB/s (which you get with all Ethernet speeds), they left the ratio (1 Gigabit to 100 MB/s) the same. Thus, every Gigabit = 100 MB/s, just like in previous speeds (1/2/4/8 FC). So while 16 Gbit Fibre Channel provides 1600 MB/s of throughput, the baud rate is actually only 14 gigabaud, and not true 16 Gbit. And don’t take my word for it, check out page 7 of Scott Shimomura‘s (of Brocade) presentation at the SPDE conference.

  • 1 Gbit Fibre Channel = 100 MB/s
  • 1 Gbit Ethernet = 125 MB/s
  • 2 Gbit Fibre Channel = 200 MB/s
  • 4 Gbit Fibre Channel = 400 MB/s
  • 8 Gbit Fibre Channel = 800 MB/s
  • 10 Gbit Ethernet/FCoE = 1250 MB/s
  • 16 Gbit Fibre Channel = 1600 MB/s

10 Gigabit Ethernet provides 1250 MB/s, providing true 10 Gigabit Ethernet, and not putting the slight overhead into the equation. So while 10 Gigabit Ethernet is true 10 Gigabit, 16 Gigabit Fibre Channel is actually 14 Gigabit Fibre Channel (14.025, to be exact).

And that’s what Russ Fellows doesn’t know. His entire article is based on a false premise: Thinking that the move to 64/66 makes 16 Gbit pass more than twice as much traffic as 8 Gbit. But it’s not. He says that with 8 Gbit FC, 1+1 = 1.6 (when compared to 16 Gbit FC), which is factually incorrect for the reasons I’ve just explained. Yes, 64/66 bit encoding is more efficient. But they dropped the baud rate, negating the efficiency gains

8 Gigabit Fibre Channel provides 800 Megabytes per second of data transfer. 16 Gigabit Fibre Channel (really 14 Gigabit Fibre Channel) provides 1600 Megabytes per second of data transfer. 800 + 800 = 1600.

Sorry Russ, 1+1 really does equal 2. Even in Fibre Channel.

micdrop

OTV AEDs Are Like Highlanders

While prepping for CCIE Data Center and playing around with a lab environment, I ran into a problem I’d like to share.

I was setting up a basic OTV setup with three VDCs running OTV, connecting to a core VDC running the multicast core (which is a lot easier than it sounds). I’m running it in a lab environment we have at Firefly, but I’m not going by our normal lab guide, instead making it up as I go along in order to save some time, and make sure I can stand up OTV without a lab guide.

Each VDC will set up an adjacency with the other two, with the core VDC providing unicast and multicast connectivity.  That part was pretty easy to setup (even the multicast part, which had previously freaked me the shit out). Each VDC would be its own site, so no redundant AEDs.

On each OTV VDC, I setup the following as per my pre-OTV checklist:

  • Bi-directional IPv4 unicast connectivity to each join interface (I used a single OSPF area)
  • MTU of 9216 end-to-end (easy since OTV requires M line cards, and it’s just an MTU command on the interface)
  • An OTV site VLAN which requires:
    • That the VLAN is configured on the VDC
    • That the VLAN is active on a physical port that is up
  • Multicast configuration
    • IP pim sparse-mode configuration on every interface, end-to-end
    • IP igmp version 3 on every interface end-to-end
    • Rendezvous point (RP) configured on the loopback address of the core VDC (I used the bidir tag)

So I got all that configured and then configured the OTV setup. Very basic:

feature otv

otv site-vlan 10

interface Overlay1
  otv join-interface Ethernet1/2
  otv control-group 239.1.1.1
  otv data-group 232.1.1.0/28
  otv extend-vlan 100
  no shutdown
otv site-identifier 0000.0000.0002

ip pim rp-address 10.11.200.1 group-list 224.0.0.0/4
ip pim ssm range 232.0.0.0/8

The only difference between the three OTV VDC configurations was the site-identifier and the join interface. Everything else was identical, pretty easy configuration. But… it didn’t work. Shit. Time for some show commands:

N7K-11-vdc-2# show otv adjacency
Overlay Adjacency database
Overlay-Interface Overlay1 :
Hostname System-ID Dest Addr Up Time State
VDC-3 18ef.63e9.5d43 10.11.3.2 01:36:52 UP
vdc-4 18ef.63e9.5d44 10.11.101.2 01:41:57 UP
vdc-2#

OK, so the adjacencies are built. I’ve at least got IP4 unicast and multicast going on. How about “show otv”?

N7K-11-vdc-2# show otv

OTV Overlay Information
Site Identifier 0000.0000.0002

Overlay interface Overlay1

 VPN name : Overlay1
 VPN state : UP
 Extended vlans : 100 (Total:1)
 Control group : 239.1.1.1
 Data group range(s) : 232.1.1.0/28
 Join interface(s) : Eth1/2 (10.11.2.2)
 Site vlan : 11 (up)
 AED-Capable : No (Site-ID mismatch)
 Capability : Multicast-Reachable
N7K-11-vdc-2#

Site-ID mismatch? What the shit? They’re supposed to mismatch. I try another command:

N7K-11-vdc-2# show otv site

Dual Adjacency State Description
 Full - Both site and overlay adjacency up
 Partial - Either site/overlay adjacency down
 Down - Both adjacencies are down (Neighbor is down/unreachable)
 (!) - Site-ID mismatch detected

Local Edge Device Information:
 Hostname vdc-2
 System-ID 18ef.63e9.5d42
 Site-Identifier 0000.0000.0002
 Site-VLAN 11 State is Up

Site Information for Overlay1:

Local device is not AED-Capable (Site-ID mismatch)
Neighbor Edge Devices in Site: 1

Hostname System-ID Adjacency- Adjacency- AED-

 State Uptime Capable

--------------------------------------------------------------------------------
VDC-3 18ef.63e9.5d43 Partial (!) 00:17:39 Yes

Now this show command confused me for a while. I was trying to figure out the Site-ID mismatch. I was also wondering why I could see VDC-3 but couldn’t see VDC-4. Then it dawned on me (after am embarrassing amount of time) I’m not supposed to. I’m not supposed to see VDC-3, either. The “show site” command is only looking at the local area. For my configuration, I shouldn’t see any other VDCs with “show otv site”.

This means that there’s some type of Layer 2 connectivity between the different sites. VDC-3 and VDC-4 both somehow see each other as Layer 2 adjacent. That shouldn’t happen if they’re supposedly on remote sites. This is a lab environment, so there’s some sort of Layer 2 connectivity for the Site-VLAN that I need to kill.

OTV edge devices are like highlanders, if there’s Layer 2 adjacency, they sense each other.

highlander9

“I could sense you by your VLAN”

It probably happened on the interface that I assigned the site-VLAN to as an access port. A VLAN will not show “active” unless you have an active physical link (interface VLANs don’t count).

So I went through and re-configured the site VLAN. Instead of VLAN 10 (which was probably active on the other ends of those interfaces somehow) I created new VLANs, and used a unique VLAN for each VDC. The site-VLANs do not need to be identical between sites. I put the VLAN on a physical link that was up, and voila.

In the real world, you probably won’t run into this. However, it’s possible if there are other Layer 2 interconnects going on in your data center (perhaps dark fiber) or you’re transitioning from one DCI to another, you may hit this.

2013 Was A Good Year

Happy new year everyone. I think 2014 will be quite an interesting year for the industry. 2013 certainly was for me, at least professionally and personally. I tried twice to get my CCIE DC, didn’t pass. I did, however, obtain my CCNP Data Center. I also learn a whole bunch of new skills. Here’s a quick clip show (and yes, there are shots of me skydiving in a Star Trek TNG Uniform).

CCIE DC Attempt #1: Did Not Pass

Earlier this month, I drove my rental car up to Cisco’s infamous 150 Tasman Drive after being stuck on the 101 for about an hour. I checked in, sat down, and dug into my very first CCIE lab attempt. A bit over 8 hours later, I knew I didn’t pass, but I got a good feel for what the lab is like.

My preparation for the exam had been very unbalanced, working extensively with some parts of the blueprint, while other aspects of the blueprint I hadn’t really touched in over a year. So I was not surprised at all to see the “FAIL” notice when I got my score.

The good news is that I think with the right preparation on my weak parts, I can pass on the next attempt (which I haven’t yet scheduled, but will soon).

The following animated GIF is what it’s like to do parts of a CCIE lab exam that you haven’t prepared for.

beavis

 

 

 

How It Feels Studying for my CCIE DC Lab

alwaysbelearning

So, I’m a Skydiver Now

As some of you may know, I’ve been learning how to skydive. And this past Saturday (June 7th, 2013) I finally got my “A-license”, which is the first level of skydiving. The very next day, I did a “big way” camp, which is where you learn how to do large formation skydives. It was a lot of very valuable experience, and a great opportunity for a n00b like me.

Big Way Camp Jump for the Rose from Tony Bourke on Vimeo.

I love computing, networking, and teaching technologies. I love learning new technologies. I do it at work, and I play with it at home.

And while I do enjoy it, I have other things that I do that are non-computing. I think it’s important to have something else in your life besides your work, even if (and possibly especially if) you’re passionate about your work. It will help you with your work, and help you keep sane. It will help burn-out. The people I know of who are at the top of their game in the industry have very developed non-work lives.

It’s easy in IT to get dragged further and further in. More meetings, more projects, more deadlines. Boundary setting is a challenge, but I think it’s important to develop that skill of keeping the boundaries where you’re comfortable with them.

A.B.L.

Always Be Learning.

Follow

Get every new post delivered to your Inbox.

Join 76 other followers